On Comparing Variable Zagreb Indices for Unicyclic Graphs

نویسندگان

  • Meng Zhang
  • Bolian Liu
چکیده

Recently, the first and second Zagreb indices are generalized into the variable Zagreb indices which are defined by M1(G) = ∑ u∈V (d(u))2λ and M2(G) = ∑ uv∈E (d(u)d(v)), where λ is any real number. In this paper, we prove that M1(G)/n M2(G)/m for all unicyclic graphs and all λ ∈ (−∞, 0]. And we also show that the relationship of numerical value between M1(G)/n and M2(G)/m is indefinite in the distinct unicyclic graphs for each λ ∈ (1,+∞). With the conclusion in [4], we finish discussing the relationship of M1(G)/n and M2(G)/m in unicyclic graphs for λ ∈ R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leap Zagreb indices of trees and unicyclic graphs

By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. ...

متن کامل

The Hyper-Zagreb Index of Trees and Unicyclic Graphs

Topological indices are widely used as mathematical tools to analyze different types of graphs emerged in a broad range of applications. The Hyper-Zagreb index (HM) is an important tool because it integrates the first two Zagreb indices. In this paper, we characterize the trees and unicyclic graphs with the first four and first eight greatest HM-value, respectively.

متن کامل

Sharp lower bounds for the Zagreb indices of unicyclic graphs

The first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices of the respective graph. In this paper we present the lower bound on M1 and M2 among all unicyclic graphs of given order, maximum degree, and cycle length, and characterize graphs for which th...

متن کامل

On the extremal graphs with respect to bond incident degree indices

Many existing degree based topological indices can be clasified as bond incident degree (BID) indices, whose general form is BID(G) = ∑ uv∈E(G) Ψ(du, dv), where uv is the edge connecting the vertices u, v of the graph G, E(G) is the edge set of G, du is the degree of the vertex u and Ψ is a non-negative real valued (symmetric) function of du and dv. Here, it has been proven that if the extensio...

متن کامل

Note on the comparison of the first and second normalized zagreb eccentricity indices.

The conjecture Σuv V(G) dG(u)2 / n(G) ≤ Σuvv E(G) dG(u)dG(v) / m(G) that compares normalized Zagreb indices attracted recently a lot of attention1-9. In this paper we analyze analogous statement in which degree dG(u) of vertex u is replaced by its eccentricity δG(u) in which way we define novel first and second Zagreb eccentricity indices. We show that Σuv V(G) εG(u)2 / n(G) ≥ Σuvv E(G) εG(u)εG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012